3.1.43 \(\int \frac {\sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{x} \, dx\) [43]

Optimal. Leaf size=160 \[ \frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {b c \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 \sqrt {d} (a+b x)}-\frac {a \sqrt {c} \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a+b x} \]

[Out]

-a*arctanh((d*x^2+c)^(1/2)/c^(1/2))*c^(1/2)*((b*x+a)^2)^(1/2)/(b*x+a)+1/2*b*c*arctanh(x*d^(1/2)/(d*x^2+c)^(1/2
))*((b*x+a)^2)^(1/2)/(b*x+a)/d^(1/2)+1/2*(b*x+2*a)*((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/(b*x+a)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {1015, 829, 858, 223, 212, 272, 65, 214} \begin {gather*} \frac {\sqrt {a^2+2 a b x+b^2 x^2} (2 a+b x) \sqrt {c+d x^2}}{2 (a+b x)}+\frac {b c \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 \sqrt {d} (a+b x)}-\frac {a \sqrt {c} \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a+b x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/x,x]

[Out]

((2*a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/(2*(a + b*x)) + (b*c*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(2*Sqrt[d]*(a + b*x)) - (a*Sqrt[c]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTan
h[Sqrt[c + d*x^2]/Sqrt[c]])/(a + b*x)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1015

Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :
> Dist[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])), Int[(g + h*x)^m*(b + 2*c*
x)^(2*p)*(d + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, f, g, h, m, p, q}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{x} \, dx &=\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {\left (2 a b+2 b^2 x\right ) \sqrt {c+d x^2}}{x} \, dx}{2 a b+2 b^2 x}\\ &=\frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {4 a b c d+2 b^2 c d x}{x \sqrt {c+d x^2}} \, dx}{2 d \left (2 a b+2 b^2 x\right )}\\ &=\frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {\left (2 a b c \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \frac {1}{x \sqrt {c+d x^2}} \, dx}{2 a b+2 b^2 x}+\frac {\left (b^2 c \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \frac {1}{\sqrt {c+d x^2}} \, dx}{2 a b+2 b^2 x}\\ &=\frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {\left (a b c \sqrt {a^2+2 a b x+b^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^2\right )}{2 a b+2 b^2 x}+\frac {\left (b^2 c \sqrt {a^2+2 a b x+b^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 a b+2 b^2 x}\\ &=\frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {b c \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 \sqrt {d} (a+b x)}+\frac {\left (2 a b c \sqrt {a^2+2 a b x+b^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{d \left (2 a b+2 b^2 x\right )}\\ &=\frac {(2 a+b x) \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {c+d x^2}}{2 (a+b x)}+\frac {b c \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 \sqrt {d} (a+b x)}-\frac {a \sqrt {c} \sqrt {a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a+b x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 118, normalized size = 0.74 \begin {gather*} \frac {\sqrt {(a+b x)^2} \left (\sqrt {d} (2 a+b x) \sqrt {c+d x^2}+4 a \sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} x-\sqrt {c+d x^2}}{\sqrt {c}}\right )-b c \log \left (-\sqrt {d} x+\sqrt {c+d x^2}\right )\right )}{2 \sqrt {d} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/x,x]

[Out]

(Sqrt[(a + b*x)^2]*(Sqrt[d]*(2*a + b*x)*Sqrt[c + d*x^2] + 4*a*Sqrt[c]*Sqrt[d]*ArcTanh[(Sqrt[d]*x - Sqrt[c + d*
x^2])/Sqrt[c]] - b*c*Log[-(Sqrt[d]*x) + Sqrt[c + d*x^2]]))/(2*Sqrt[d]*(a + b*x))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.10, size = 92, normalized size = 0.58

method result size
default \(\frac {\mathrm {csgn}\left (b x +a \right ) \left (\sqrt {d \,x^{2}+c}\, \sqrt {d}\, b x -2 \sqrt {d}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{2}+c}}{x}\right ) \sqrt {c}\, a +2 \sqrt {d \,x^{2}+c}\, \sqrt {d}\, a +\ln \left (\sqrt {d}\, x +\sqrt {d \,x^{2}+c}\right ) b c \right )}{2 \sqrt {d}}\) \(92\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

1/2*csgn(b*x+a)*((d*x^2+c)^(1/2)*d^(1/2)*b*x-2*d^(1/2)*ln(2*(c^(1/2)*(d*x^2+c)^(1/2)+c)/x)*c^(1/2)*a+2*(d*x^2+
c)^(1/2)*d^(1/2)*a+ln(d^(1/2)*x+(d*x^2+c)^(1/2))*b*c)/d^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)*sqrt((b*x + a)^2)/x, x)

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 341, normalized size = 2.13 \begin {gather*} \left [\frac {b c \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + 2 \, a \sqrt {c} d \log \left (-\frac {d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right ) + 2 \, {\left (b d x + 2 \, a d\right )} \sqrt {d x^{2} + c}}{4 \, d}, -\frac {b c \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - a \sqrt {c} d \log \left (-\frac {d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right ) - {\left (b d x + 2 \, a d\right )} \sqrt {d x^{2} + c}}{2 \, d}, \frac {4 \, a \sqrt {-c} d \arctan \left (\frac {\sqrt {-c}}{\sqrt {d x^{2} + c}}\right ) + b c \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + 2 \, {\left (b d x + 2 \, a d\right )} \sqrt {d x^{2} + c}}{4 \, d}, -\frac {b c \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - 2 \, a \sqrt {-c} d \arctan \left (\frac {\sqrt {-c}}{\sqrt {d x^{2} + c}}\right ) - {\left (b d x + 2 \, a d\right )} \sqrt {d x^{2} + c}}{2 \, d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/4*(b*c*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + 2*a*sqrt(c)*d*log(-(d*x^2 - 2*sqrt(d*x^2 +
 c)*sqrt(c) + 2*c)/x^2) + 2*(b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d, -1/2*(b*c*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^
2 + c)) - a*sqrt(c)*d*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2) - (b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d
, 1/4*(4*a*sqrt(-c)*d*arctan(sqrt(-c)/sqrt(d*x^2 + c)) + b*c*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*
x - c) + 2*(b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d, -1/2*(b*c*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - 2*a*sqr
t(-c)*d*arctan(sqrt(-c)/sqrt(d*x^2 + c)) - (b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + d x^{2}} \sqrt {\left (a + b x\right )^{2}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)**2)**(1/2)*(d*x**2+c)**(1/2)/x,x)

[Out]

Integral(sqrt(c + d*x**2)*sqrt((a + b*x)**2)/x, x)

________________________________________________________________________________________

Giac [A]
time = 3.22, size = 102, normalized size = 0.64 \begin {gather*} \frac {2 \, a c \arctan \left (-\frac {\sqrt {d} x - \sqrt {d x^{2} + c}}{\sqrt {-c}}\right ) \mathrm {sgn}\left (b x + a\right )}{\sqrt {-c}} - \frac {b c \log \left ({\left | -\sqrt {d} x + \sqrt {d x^{2} + c} \right |}\right ) \mathrm {sgn}\left (b x + a\right )}{2 \, \sqrt {d}} + \frac {1}{2} \, \sqrt {d x^{2} + c} {\left (b x \mathrm {sgn}\left (b x + a\right ) + 2 \, a \mathrm {sgn}\left (b x + a\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="giac")

[Out]

2*a*c*arctan(-(sqrt(d)*x - sqrt(d*x^2 + c))/sqrt(-c))*sgn(b*x + a)/sqrt(-c) - 1/2*b*c*log(abs(-sqrt(d)*x + sqr
t(d*x^2 + c)))*sgn(b*x + a)/sqrt(d) + 1/2*sqrt(d*x^2 + c)*(b*x*sgn(b*x + a) + 2*a*sgn(b*x + a))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {{\left (a+b\,x\right )}^2}\,\sqrt {d\,x^2+c}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((a + b*x)^2)^(1/2)*(c + d*x^2)^(1/2))/x,x)

[Out]

int((((a + b*x)^2)^(1/2)*(c + d*x^2)^(1/2))/x, x)

________________________________________________________________________________________